Questions 1

discipline «Nonlinear Automatic Control Systems"

- 1. Give the basic differences between linear and nonlinear ACS. Give the features of research into the nonlinear ACS.
- 2. Give the typical nonlinear elements: 2 position relays; give their mathematical description.
- 3. Give the typical nonlinear elements: 3 position relays; give their mathematical description.
- 4. Give the typical nonlinear elements: relays with saturation and with insusceptibility zone.
- 5. Give definition of controllability in linearized ACS. Give the proof of criterion of controllability by R. Kallman.
- 6. Give the definition of observability in linearized ACS. Give of criterion of observability by R. Kallman; show on an example.
- 7. Give definition of controllability in linearized ACS; give the criterion of controllability by E. Gilbert.
- 8. Give definition of observability in linearized ACS; give the criterion of observability by E. Gilbert.
- 9. List the exact methods of research into nonlinear ACS. Andronov's research method. Give the basic concepts of phase-plane method and its features; show on an example.
- 10. Receive differential equation of a phase trajectory; show its solution; show on an example.
- 11. Show the classification of points of stationary of linearized systems on the phase-plane, if roots of characteristic equation are real.
- 12. Show the classification of points of stationary of linearized systems on the phase-plane, if roots of characteristic equation are complex-conjugate.
- 13. Show the classification of points of stationary of linearized systems on the phase-plane, if roots of characteristic equation are purely imaginary; show a numerical example.
- 14. Give the definition of the systems with variable structure (SVS). Give the basic idea of construction of SVS; show on an example.
- 15. Give the examples "stitching together" of systems with variable structure (SVS).

Questions 2

discipline "Nonlinear Automatic Control Systems"

- 1. Should show from what structures the system with variable structure (SVS) "is stitched". Show the mode of the movement on degenerate trajectories of systems with variable structure (SVS).
- 2. Should show from what structures the system with variable structure (SVS) "is stitched". Show the mode of switching of systems with variable structure (SVS).
- 3. Should show from what structures the system with variable structure (SVS) "is stitched". Show the sliding operation mode of systems with variable structure (SVS).
- 4. Give definitions and show stability of systems "in small", "in big" and "in general".
- 5. Give definition and show the examples functions fixed-sign, constant-sign and alternating-sign.
- 6. Provide a square-law form and show her properties. Give formulating Sylvester's criteria.
- 7. Give creation the Lyapunov's function for linear systems. Show Lyapunov's matrix equation; formulate Lyapunov's Theorems.
- 8. Provide Kallman's theorem of stability of systems. Show an example asymptotically steady linear ACS.
- 9. Provide theorems of a direct (second) method of A.M. Lyapunov of stability "in big" for nonlinear ACS.
- 10. Show the method of creation of Lyapunov's function for nonlinear ACS, namely Krasovsky's method.
- 11. Show a method of creation of Lyapunov's function for nonlinear ACS, namely the method of a variable gradient or Schultz-Gibson's method.
- 12. Show parametric synthesis of nonlinear laws of control of a direct Lyapunov's method (on the example of inclusion 2 the position relay).
- 13. Give definition of absolute stability (stability "in general"). Show the matrix structural scheme of nonlinear ACS.
- 14. Give the mathematical description of a nonlinear system to structure to which the research Pópov technique is applicable; show the Pópov's function.
- 15. Provide the formulating of Pópov's theorem for absolute stability of the nonlinear Automatic Control System.

Subjects of tasks at written examination:

- 1. Research of system on controllability and observability by R. Kallman's criteria.
- 2. Research of system on controllability and observability by E. Gilbert's criteria.
- 3. Application of Andronov 's method for research of systems in the phase plane; creation of phase portraits.
- 4. Research of the system by the second Lyapunov's method on stability "in big".